Stock Market Forecasting Based on Text Mining Technology: A Support Vector Machine Method
نویسندگان
چکیده
News items have significant impact on stock markets but the ways is obscure. Many previous works have aimed at finding accurate stock market forecasting models. In this paper, we use text mining and sentiment analysis on Chinese online financial news, to predict Chinese stock tendency and stock prices based on support vector machine (SVM). Firstly, we collect 2,302,692 news items, which date from 1/1/2008 to 1/1/2015. Secondly, based on this dataset, a specific domain stop-word dictionary and a precise sentiment dictionary are formed. Thirdly, we propose a forecasting model using SVM. On the algorithm of SVM implementation, we also propose two parameter optimization algorithms to search for best initial parameter setting. Result shows that parameter G has the main effect, while parameter C’s effect is not obvious. Furthermore, support vector regression (SVR) models for different Chinese stocks are similar whereas in support vector classification (SVC) models best parameters are quite differential. Series of contrast experiments show that: a) News has significant influence on stock market; b) Expansion input vector for additional situations when that day has no news data is better than normal input in SVR, yet is worse in SVC; c) SVR shows a fantastic degree of fitting in predicting stock fluctuation while such result has some time lag; d) News effect time lag for stock market is less than two days; e) In SVC, historic stock data has a most efficient time lag which is about 10 days, whereas in SVR this effect is not obvious. In addition, based on the special structure of the input vector, we also design a method to calculate the financial source impact factor. Result suggests that the news quality and audience number both have significant effect on the source impact factor. Besides, for Chinese investors, traditional media has more influence than digital media.
منابع مشابه
Forecasting the Tehran Stock market by Machine Learning Methods using a New Loss Function
Stock market forecasting has attracted so many researchers and investors that many studies have been done in this field. These studies have led to the development of many predictive methods, the most widely used of which are machine learning-based methods. In machine learning-based methods, loss function has a key role in determining the model weights. In this study a new loss function is ...
متن کاملForecasting Stock Price Movements Based on Opinion Mining and Sentiment Analysis: An Application of Support Vector Machine and Twitter Data
Today, social networks are fast and dynamic communication intermediaries that are a vital business tool. This study aims at examining the views of those involved with Facebook stocks so that we can summarize their views to predict the general behavior of this stock and collectively consider possible Facebook stock price movements, and create a more accurate pattern compared to previous patterns...
متن کاملMining Stock Market Tendency Using GA-Based Support Vector Machines
In this study, a hybrid intelligent data mining methodology, genetic algorithm based support vector machine (GASVM) model, is proposed to explore stock market tendency. In this hybrid data mining approach, GA is used for variable selection in order to reduce the model complexity of SVM and improve the speed of SVM, and then the SVM is used to identify stock market movement direction based on th...
متن کاملPrediction of Stock Market Index Movement by Ten Data Mining Techniques
Ability to predict direction of stock/index price accurately is crucial for market dealers or investors to maximize their profits. Data mining techniques have been successfully shown to generate high forecasting accuracy of stock price movement. Nowadays, in stead of a single method, traders need to use various forecasting techniques to gain multiple signals and more information about the futur...
متن کاملStock Price Prediction using Machine Learning and Swarm Intelligence
Background and Objectives: Stock price prediction has become one of the interesting and also challenging topics for researchers in the past few years. Due to the non-linear nature of the time-series data of the stock prices, mathematical modeling approaches usually fail to yield acceptable results. Therefore, machine learning methods can be a promising solution to this problem. Methods: In this...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JCP
دوره 12 شماره
صفحات -
تاریخ انتشار 2017